Evaluating two model reduction approaches for large scale hedonic models sensitive to omitted variables and multicollinearity
نویسندگان
چکیده
Abstract Hedonic models in environmental valuation studies have grown in terms of number of transactions and number of explanatory variables.We focus on the practical challenge of model reduction, when aiming for reliable parsimonious models, sensitive to omitted variable bias and multicollinearity. We evaluate two common model reduction approaches in an empirical case. The first relies on a principal component analysis (PCA) used to construct new orthogonal variables, which are applied in the hedonic model. The second relies on a stepwise model reduction based on the variance inflation index andAkaike’s information criteria. Our empirical application focuses on estimating the implicit price of forest proximity in a Danish case area, with a dataset containing 86 relevant variables. We demonstrate that the estimated implicit price for forest proximity, while positive in all models, is clearly sensitive to the choice of approach, as the PCA reduced model produces a parameter estimate double the size of the alternative models. While PCA is an attractive variable reduction approach, it may result in an important loss of information relative to the stepwise reduction information based approach.
منابع مشابه
پیشبینی قیمت مسکن برای شهر اهواز: مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی
Determination and the estimation of the house price in urban areas has a great importance for governments, individual and state investors and common people. The mentioned estimation can be used in future planning and decision making of many urban and regional policies. In this regard, due to the vital importance of the house price in recent decades powerful and effective functions have been use...
متن کاملبهکارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر همخطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان
Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...
متن کاملAn Embarrassment of Riches: Confronting Omitted Variable Bias and Multi-Scale Capitalization in Hedonic Price Models
Many researchers have addressed concerns of omitted variable bias in hedonic price models through the use of spatial fixed effects. We argue that this approach does not consider the biases introduced by effects that overlap the zone of capitalization for the non-market good. We show this bias can dominate the usual omitted variable bias using data on developer-provided open space. We control fo...
متن کاملA Study on Inference from Distance Variables in Hedonic Regression
Abstract—In urban area, several landmarks may affect housing price and rents, and hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollineari...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014